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In Fig. 4 we show the results of a similar calculation but for a lower initial density 
(@0 = 2"10 -4 kg/m3). A regime close to the regime of "total freezing ~' occurs in this case. 
It is seen that the time of the start of dispersal for the real value of 7(t, m) increases by 
an order of magnitude compared with the value calculated for y = 1.4, while the velocity of 
dispersal for y = 1.4 is five times higher than for the actual function y(t, m). 

The method proved to be sufficiently effective in the examples considered. The func- 
tion 7(t, m) was determined by the method of successive approximations. Two iterations pro- 
vided an accuracy of ~5%, indicating rapid convergence. The system of CK equations was cal- 
culated at five points in space, which was sufficient to achieve an accuracy of ~5% in the 
interpolations of y. It will be interesting to extend the described method to a wider class 
of gasdynamic problems with strong nonequilibrium. 

In conclusion, the authors sincerely thank I. A. Devyaterikov, E. A. Ivanov, and V. P. 
Kudryavtsev for useful discussions in the course of the completion of this work. 
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ELECTROHYDRODYNAMIC PROBING OF HIGH-VELOCITY AEROSOL FLOW BY MEANS OF A 

CORONA DISCHARGE 

N. L. Vasil'eva and L. T. Chernyi UDC 532.5134:537.24 

The charging of disperse aerosol particles as they move through a uniform, unipo!ar co- 
ronadischarge whose electric field is directed along the aerosol flux was investigated in [i]. 
The effect of gas motion on the corona discharge characteristics, which is considerable at 
aerosol velocities u ~ bE, where E is the electric field strength and b is the ion mobility, 
was taken into account in these investigations. On the basis of the results obtained in [i], 
we investigate here the macroscopic electrohydrodynamic methods of calculating the mean 
parameters of high-velocity aerosol fluxes in a uniform corona discharge that do not require 
complex microscopic measurements. 

i. Consider the steady-state flow of aerosol consisting of a gas and disperse liquid 
particles between two flat, round grid electrodes, positioned perpendicularly with respect to 
the aerosol flux. Assume that in order to produce a corona discharge a system of points 
oriented along the aerosol flux and starting to display corona at the emitter potential @o > 
0 is mounted on the emitter electrode; the collector electrode is grounded (its potential 
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is used as the zero potential); the aerosol moves through the interelectrode gap from the emit- 

ter to the collector. Approximating the corona points by semiellipsoids of revolution, we 

shall estimate the initial electric field strength at which the corona discharge is fired. As 

is known [2-4], a corona discharge develops in sharply nonuniform fields if the condition for 
a self-maintained gas discharge is satisfied: 

~ (E) ds = K ,  (1. 1) 

where ~ is the effective ionization coefficient. For air at normal atmospheric pressure and 

temperature, the dependence of a on the electric field strength E can be approximated by the 

expression [3-5] ~(E) = A(E--B) 2, (1.2) 

which provides good agreement with experimental values up to E = 1.2-107 V/m [3-5]. The ex- 
perimentally obtained values of the coefficients B = 24.5"10 s V/m and ~/A = 6.5"104 V/m ~2 are 

given in [3]. 

We shall consider the case where the following inequalities are satisfied: 

h>>l>>A, (I.3) 

where h is the spacing between the corona points of the grid emitter, ~ is the length of 
the points, and A is the mesh size in the grid. The distribution of the electric field strength 
around each point is then close to the field distribution around a single corona point, fast- 
ened to an infinitely large metal plate. We write the equation for determining the electric 
field strength causing firing of the corona discharge in the case of a single corona point by 
using Eqs. (i.i) and (1.2) and the corresponding approximate expressions for the distribution 

of the field strength E near corona electrodes of any shape that have been derived in [3]: 

sl r2 ] �9 - -  B d z  = K .  A Ez (r+z)*" 
0 

(1.4) 

Here E l is the electric field strength at the tip of the point, r is the principal curvature 
radius at the end of the semiellipsoid of revolution approximating the point, x is the dis- 
tance from the end of the point along the normal to it, and x* is the value determined from 

the condition 

B = 0 .  ~(z*)=--A El (r+x*) ~ 

A f t e r  p e r f o r m i n g  the  i n t e g r a t i o n  in  ( 2 . 4 ) ,  we o b t a i n  an e q u a t i o n  f o r  d e t e r m i n i n g  the  e l e c t r i c  
f i e l d  E 7 c a u s i n g  f i r i n g  of  t he  corona  d i s c h a r g e :  

E[ 2 6El + 8]//'E-~ 3 .  K t) ,E~ =g'E' _ = ( ~ +  (1.5) 
For instance, assume that the thickness and the length of the corona point are equal to 2m = 
2"10 -3 m and 7 = 5"10 -3 m, respectively. Then r = m2/7 = 2"10 -4 m. We find E~ ~ 4.9 from 
(1.5) and, thus, E; = 1.2"107 V/m and E = ETr2/(r + x) 2 ~ 1.2"107 V/m. 

Before the corona discharge firing, the electric field distribution around a single 
point having the shape of a semiellipsoid of revolution fastened to a metal plate coincides 
with the electric field distribution in the case of an uncharged conducting ellipsoid of 
revolution, located in an external uniform electric field whose strength is directed along 
the ellipsoid's major axis and is equal to the strength Eo of the electric field remote from 
the metallic flat surface with the point. Therefore, the electric field strength at the tip 

of the point E7 is expressed in terms of Eo by means of the equation [6] 
2e3Eo /- 

t@e ] ,  e ~  ~ t  l~. (1 .6)  
(t - -  e ~) ( l n ~ - - 2 e  

\ 7 
I f  we know the  d imens ions  o f  t he  corona  p o i n t  m and ; and the  v a l u e  of  ET, we can r e a d i l y  
determine by means of expression (1.6) the electric field strength Eo at the distance L >> l 
from the electrode at which the corona discharge is fired. For instance, let E7 = 1.2"107 
V/m. Then, for the above values of m and l, we have Eo = 6.74"10 .5 V/m. If the inequal- 
ity H >> L, where H is the spacing between the grid electrodes, is satisfied, it dan be con- 
sidered that Eo is the mean strength of the electric field near the grid emitter (in compari- 
son with the spacing H). If, instead of inequalities (1.3), the weaker conditions h ~ l 
A are satisfied, expression (1.6) can only be used for estimating the order of magnitude of 
the mean field strength at the grid emitter Eo at which a corona discharge is fired. 
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2. During their movement in the region of a unipolar corona discharge between grid 
electrodes, disperse aerosol particles acquire a positive electric charge as positive 
ions settle on them. We shall limit our considerations to the case of fairly strong elec- 
tric fields and low particle concentrations, which is important in practice, where it is 
possible to neglect the influence exerted on the charging of particles by the thermal mo- 
tion of ions and by the electric field and ion concentration perturbations caused by neigh- 
boring particles. For this, it is sufficient that the following inequalities be satisfied 
[7]: 

a << 6 ~< ~ << g (6 ~ bEa2/D, ~ ~ n-~/3). ( 2 . 1 )  

Here a is the particle radius, 5 is the characteristic path traveled by ions under the action 
of the electric field during the time ~ % ~/d, i.e., during the time necessary for their dis- 
placement over the distance wa as a result of thermal motion, Z is the characteristic dis- 
tance between particles, n is the particle concentration, E is the mean electric field 
strength throughout a physically infinitesimal volume containing a sufficiently large number 
of particles, and b and D are the mobility and the diffusion coefficient of ions, respective- 
ly (b = 1.7"10 -4 m2/(V'sec) and D = 4.6"10 -6 m2/sec); the permittivity of the aerosol is as- 
sumed to be equal to unity. The latter inequality in (2.1) is based on the assumption that 
the motion of aerosol in an electric field can be described within the framework of the mechan- 
ics of continuous media [8]. 

Assume also that the spacing between the points of the grid emitter h, the spacing be- 
tween the electrodes H, and the electrode radius R satisfy the inequalities 

H > > H > > h .  ( 2 . 2 )  

Then we consider that the aerosol flow is one-dimensional and calculate the electric param- 
eters of the flow by means of the expressions derived in [i]: 

2 -  + ~6'~ Ii + uy + --~(u + bEo) 

t 
] = ~ [(u § bEH) 2 - -  (u § bEo)~]; 

gg lb 

= = bE ' = 7 '  

( 2 . 3 )  

(2.4) 

(2.5) 

Here % is the emitter potential (9 > go ~ EoH), u is the aerosol velocity, Eo and E H are the 
values of the field strength at the emitter and the collector, respectively, j is the density 
of the ion current between the electrodes, QH is the charge of an aerosol particle emerging 
from the interelectrode gap, and Io, I=, Ko, and K2 are modified Bessel functions. The elec- 
tric current transported by disperse particles Jp and the electric ion current J are: respec- 
tively calculated by means of the expressions 

Jp = ~R2unQn, Y = ~Rzf. ( 2 . 6 )  

In deriving Eqs. (2.3)-(2.5), it was assumed [i] that the effect of the electric field 
on the motion of the gas and the disperse particles is slight, the gas and particle veloci- 
ties are constant and equal to each other, and the concentration of disperse particles is suf- 
ficiently low (nQH << q, J << J), so that the effect of particles on the electric field 
strength E and the densityPof the electric charge of ions q can be neglected. It should be 
noted that, if the weaker relationship h ~ H ~ R is satisfied instead of inequalities (2.2), 
expressions (2.3)-(2.6) can be used for estimating the order of magnitude of the parameters 
in question. 

Table 1 provides the calculated values of the parameters EH, J, QH, and Jp for three 
sets of flow conditions and different dimensions and concentrations of disperse aerosol par- 
ticles. The initial strength for corona discharge firing Eo for the first set of flow condi- 
tions corresponds to points with Z = 5-10 -3 m and 2m = 2-10 -3 m on the basis of the calcula- 
tions given in paragraph I. For the second and third sets of flow conditions, the assigned 
value of Eo is correspondingly smaller by one and two orders of magnitude. A reduction in Eo 
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involves much sharper corona points. It should be noted that there are no simple analytical 

expressions relating Eo to the corona point dimensions for the second and third sets of flow 

conditions. In calculating the flow parameters, the values of ~ and Eo were assigned so that 
the ion current and the current of disperse aerosol particles satisfied the relationships 

j N I0 -B A = I pA , s ~ I0-8 A << J. (2.7) 

One can assume that disperse particles do not affect a corona discharge. It is also evident 
from Table 1 that inequalities (2.1) are satisfied for the analyzed flow conditions. 

3. Let us determine the mean dimension of disperse particles. We shall first consider 
only the case of monodisperse aerosol. Then, the mean mass charge of aerosol particles z 

upon their emergence from the interelectrode gap is related to their radius by the expres- 
sion 

z = Q~/m p = 9E~ F (Peru Pe%)/(4~9a), (3.1) 

where mp is the mass of an aerosol particle and p is the density of its material. If we 
know the mean mass charge of particles z, we can find the particle radius a from Eq. (3.1): 

a = 9E~F (Peru Pe~)/(4apz). (3.2) 
To determine the mass charge of particles we can use, for instance, a sampling data unit, 
mounted beyond the grid collector [3, 9]. The data unit consists of a cylindrical capacitor, 
which includes a grounded electrode, a lining made of an insulating material, and a filter 
with conducting fibers, which is connected to an electrometer and a pump. The pump sucks the 
aerosol into the data unit, where it is passed through a filter. An electrometer is con- 

nected to the filter in the data unit. The electrometer determines the electric potential of 

the filter %f arising as charged aerosol particles settle on the filter. The mass of the 
particles settled on the filter Mf is then measured by means of an analytical balance, while 
the mass charge of particles z is determined by means of the expression [3, 9] 

z : C i ~ / M i ,  (3.3) 
where Cf is the capacitance of the mass charge data unit. The total mass discharge of dis- 
perse particles W in the aerosol flow is often known in laboratory investigations. For in- 
stance, this discharge could be equal to the liquid discharge in the spray nozzle. The value 
of Mf can then be calculated by using the equation 

M! = WtkS/Sa, (3.4) 
without resorting to measurements of the increment in the filter mass by means of an analyti- 
calbalance. In the above equation, k is the capture coefficient of the data unit, S is its 
opening area, S a is the cross-sectional area of the aerosol jet, and t is the deposition time. 

We shall provide two examples of application of the described method for calculating the 
mean size of disperse aerosol particles. Assume that monodisperse aerosol consistinz of water 
particles suspended in air moves at the velocity u = i0 m/sec through two flat, round grid 
electrodes, positioned perpendicularly to the flow at the distance H = 5"10 -= m from each 
other. The water density is p = 103 kg/m ~. 

The electric field strength at the grid emitter Eo and the emitter potential ~ are as- 
signed as Eo = 50 kV/m and ~ = 3 kV. On the basis of (2.3), we have E H = 6.9"104 V/m for b = 
1.7"10 -4 mS/(V'sec). The z value found by means of Eq. (3.3) is z = 4.10 -2 C/kg. 

The mean radius of disperse particles determined by means of expression (3.2) is a -~- 
10 -5 m. Assume now that monodisperse aerosol consisting of water particles suspended in air 
moves between the electrodes at a velocity of i00 m/sec. The assigned electric field[ strength 
at the grid emitter Eo and the emitter potential r are equal to Eo = 5 kV/m and ~ = 0.5 kV. 
In this case, for b = 1.7"10 -4 m=/(V'sec), we have E H = 1.5"104 V/m on the basis of (2.3). 
The value of z found by means of Eq. (3.3) is z = 2.4"i0 -s C/kg. The mean radius of disperse 
aerosol particles determined by means of (3.2) is equal to a = 10 -4 m. 

Let us consider a polydisperse aerosol flow and write the expression for the mean mass 
charge of particles 

~ ] (a) QH (a) da 

, ( 3 . 5 )  z = -M~ Mi ~ i (~) ,~ (~) a~ 

0 
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where Qf is the charge of particles that have settled on the filter in the data unit, f(a) 
is the distribution function of particles with respect to the radius, and QH(a) and m(a) are 
the charge and mass of a particle with radius a as it emerges from the interelectrode gap. 
By substituting in (3.5) the expression (2.5) for the charge of a particle with the radius 
a leaving the interelectrode gap, we obtain 

9EHF (PeE,Pe~) <a2> 
Z =  4~ O <a~>, (3 .6 )  

where <a=> and <a 3> a r e  t he  s e c o n d -  and t h i r d - o r d e r  moments of  the  d i s t r i b u t i o n  f u n c t i o n  of  
particles with respect to their radius. 

In a cloud or fog, for particles whose radius varies in the range from 0.5 to 20 nm, the 
distribution function of particles with respect to their radius can be represented by [i0, 

ii] 

1 a~e-~/~, ( 3 . 7 )  
/ ( a )  - r (~ + i)~ ~+: 

where  a and B a r e  c e r t a i n ,  g e n e r a l l y  unknown, p a r a m e t e r s .  Then, the  f o l l o w i n g  r e l a t i o n s h i p s  
h o l d :  

<a~> ~ ] (a) a~da = ~ (a + 1) . . .  (~ + n/,, <a3> = ~ (a + 3) ~ + 3 <a>" 
0 

Here, <a> is the first-order moment of the distribution function f(a), i.e., the mean particle 
radius. After substitution of the expressions for the moments of the distribution function 
(3.7), Eq. (3.6) assumes the following form: 

a +  I 9EHF(PeE, Pe~) 
Z = ~ - - - ~  4~p<a> 

Consequently, the mean radius of disperse particles is given by 

r  9EHF(PeE, Pe~) (3.8) 
<a> - -  e + 3 4~pz ' 

where z is determined by Eq. (3.3) in terms of the measured filter potential in the mass 
charge data unit and the mass increment of the filter. The difference between Eq. (3.8) for 
determining the mean radius of particles in polydisperse aerosol and Eq. (3.2) for determin- 
ing the particle radius in monodisperse aerosol consists in the coefficient c = (a + I)/ 
(m + 3), which can vary from 1/3 to 1 as a varies from 0 to ~. Therefore, ifa is not known, 
it is advisable to use a = ao for an approximate estimate of <a>, so that the maximum of the 
relative error in calculating <a> by means of (3.8) occurs at both ends of the range of c 

values. Hence it follows that ao = i, C(ao) = 1/2, and 

1 . <a> = ~ = 1 / 3  11  - -  c ( ~ 0 )  1 = - g -  

Thus, the above method makes it possible to estimate, without resorting to complex mea- 
surements, also the mean radius of particles in polydisperse atmospheric aerosols with a rela- 
tive error of not more than 50% in the case where only the general form, but not the param- 
eters, of the distribution function of particles with respect to size (gamma distribution [I0, 

ii]) is known. 
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ANALOGY BETWEEN DENSITY STRATIFICATION AND ROTATION EFFECTS 

V. A. Vladimirov UDC 532.5.51+532.5.527 

The resemblance (analogy) between the properties of rotating and density-stratified 
flows was first noted by Rayleigh in 1916 [i]. Since that time, a whole series of studies 
have been published in which this analogy is successfully employed to solve problems of 
wave theory and stability theory and to describe secondary regimes and turbulence. Some of 
these achievements are reviewed in [2, 3]. 

Although the successes achieved in using the analogy to obtain new results are impor- 
tant, our general understanding of the question is unsatisfactory. One problem is the dis- 
connectedness of the examples with references to which the analogy has been demonstrated. 
The degree of proximity on the basis of which results from the two domains are considered to 
be analogous varies from identicalness to very distant similarity. There has been no classi- 
fication of the examples of the analogy on the basis of general principles. The limits of 
applicability of the analogy remain unclear. The present study is an attempt to clarify these 
points. 

From the most general standpoint, the analogy between stratification and rotation ef- 
fects is a consequence of the known principle of mechanics which states that following tran- 
sition to the corresponding moving frame of reference any part of the true acceleration of 
an object can be regarded as a "body force" field. This approach is attractive because of 
its simplicity and universality. However, it turns out that in all nontrivial cases it is 
useless owing to the velocity dependence of the "body force" field. A good example is pro- 
vided by the equations of motion of a fluid written in a rotating coordinate system. Here 
the Coriolis force has to be taken as the "body force." Clearly, the introduction of "body 
forces" of this sort cannot give any basis for transposing the known results for a uniform 
gravitational field to a new domain. 

At the same time, there are more subtle and also more productive means of explaining 
the analogy. At present, the only possible way of unifying the theories is mathematical. 
The motions of a rotating and a stratified fluid will be analogous if they are governed by 
equations of similar form. The degree of similarity must be such that the description of a 
certain class of motions in one field makes an important contribution to the solution of a 
related problem in the other. Given this approach, the analogy question reduces to the prob- 
lem of classifying the corresponding differential equations. In general form this problem 
is extremely complex. The present study offers several examples illustrating the possi- 
bility of progressing along this path. Two levels of analogy, differing considerably with 
respect to the rigorousness of the requirements, are examined: i) the level of similarity 
of the initial nonlinear equations of motion of the rotating and stratified fluids; 2) 
the similarity of the linearized equations Of motion or their corollaries (e.g., spectral 
problems for linear waves and stability theory). 

Comparison of the equations makes it possible to state that the properties of the mo- 
tions of a rotating fluid are, generally speaking, much more complex than those of a strati- 
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